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1 Abstract

We investigate the thermodynamical properties of integrable one-dimensional
spin-chains of Uimin-Sutherland type. This class includes several interesting
models like the spin-1/2 Heisenberg model, the t-J model, the SU(4)-symmetric
spin-orbital model and certain spin-ladder systems. We derive well-posed finite
sets of nonlinear integral equations (NLIE) allowing for the numerical evaluation
at arbitrary finite temperature. Analytical solutions are possible in the high- and
low-temperature limits. In the low-temperature regime, we find divergences of
the magnetic susceptibilities at critical fields and logarithmic singularities at zero
magnetic field. In comparison to other recently derived NLIE, the evaluation at
low temperature poses no problem in our formulation.

2 One-dimensional Uimin-Sutherland model

The Hamiltonian of the one-dimensional Uimin-Sutherland model is given by

H = H0+Hext =
L

∑
j=1

π j , j+1−
L

∑
j=1

q

∑
α=1

µαn j ,α . (1)

It acts on a one-dimensional lattice with L sites, where a q-state spin variable α j

is assigned to each site j . For each state α we have a grading εα = (−1)p(α) =
±1. The local interaction operator π j , j+1 permutes neighbouring spins on the
lattice with respect to their grading,

π j , j+1|α1 . . .α jα j+1. . .αL〉 = (−1)p(α j)p(α j+1)|α1 . . .α j+1α j . . .αL〉 , (2)

where periodic boundary conditions are imposed. We have added external field
terms Hext, where n j ,α counts the number of particles of type α sitting on site
j , and µα is some general chemical potential. The model is known to be exactly
solvable on the basis of the Yang-Baxter algebra. The classical counterpart is the
rational limit of the two-dimensional Perk-Schultz model with Boltzmann weights

Rβν
αµ(v) = δανδµβ +v · (−1)p(α)p(µ) ·δαβδµν . (3)

The model shows sl(r|s) symmetry, where r and sare the total number of states
with positive and negative grading (q = r +s), respectively.

In order to derive the thermodynamical properties of the Uimin-Sutherland
model, we introduce the quantum transfer matrix (QTM),

(
T QTM

)β
α(v) = ∑

{ν}
eβµν1

N/2

∏
j=1

R
β2 j−1ν2 j
α2 j−1ν2 j−1(iv+u)R̃

β2 jν2 j+1
α2 jν2 j (iv−u) , (4)

where N is the Trotter number, u = −β/N and R̃βν
αµ(v) = Rνα

µβ(−v). The partition
function of the Uimin-Sutherland model can then be written in terms of the QTM,

Z = Tre−βH = lim
N→∞

Tr
(
T QTM(0)

)L
. (5)

This implies, that in the thermodynamic limit (L → ∞) the free energy per site is
solely given by the unique largest eigenvalue of the QTM at v = 0 and N → ∞,

f = − lim
L→∞

1
Lβ

lnZ = −
1
β

lnΛmax(0) . (6)

The QTM can be diagonalized by use of the Bethe ansatz (BA). This yields

Λ(v) =
q

∑
j=1

λ j(v) =
q

∑
j=1

φ−(v)φ+(v)
q j−1(v− iε j)

q j−1(v)
q j(v+ iε j)

q j(v)
eβµj , (7)

where we have defined φ±(v) = (v± iu)N/2, q0(v) = φ−(v), qq(v) = φ+(v) and

q j(v) = ∏
M j
k j=1(v− v j

k j
) for j = 1, . . . ,q−1. For each set j the M j ≤ N/2 many

complex BA roots v j
k j

have to fulfil the BA equations

λ j(v
j
k j
)/λ j+1(v

j
k j
) = −1, (8)

to ensure that all potential poles in the expression for Λ(v) cancel. The actual
numbers M j depend on the eigenvalue of interest. To derive the BA roots corre-
sponding to the largest eigenvalue of the QTM, we have to choose all M j = N/2.

3 Derivation of the nonlinear integral equations

Equations (6) and (7) give the free energy of the model, but the task remains
to solve the (q−1)N/2 many nonlinear equations (8) to get the right BA roots.
This is quite cumbersome to do numerically and even impossible in the Trotter
limit N → ∞. Therefore, the goal is to encode the BA equations into a finite set of
nonlinear integral equations (NLIE) for which this limit can be taken analytically.

The crucial point for the derivation of the NLIE is the definition of suitable aux-
iliary functions which involve sums and products of the terms λ j(v) appearing in
the eigenvalue (7).

As an example, we treat the case of the sl(4)-symmetric Uimin-Sutherland
model (q = 4, all ε j = +1) here, which for suitably chosen chemical potentials
corresponds to the SU(4) spin-orbital model,

H =
L

∑
j=1

(2SSSjSSSj+1+1/2)(2τττ jτττ j+1+1/2)−
L

∑
j=1

(
gShSz

j +gτhτz
j

)
. (9)

We need a set of 14auxiliary functions for this case, which have been found very
recently [1],

b(1)
1 (x) =

1

2 + 3 + 4

∣∣∣∣
v=x+i/2

, b(1)
4 (x) =

4

1 + 2 + 3

∣∣∣∣
v=x−i/2
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b(1)
2 (x) =

1
2 ·
(
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1
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·
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(
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1 (x) =

1
2

1
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4
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v=x+i/2

,

b(2)
2 (x) =

1
3 · 3

4(
1
4 + 2

4 + 3
4

)
·
(

2
3 + 2

4 + 3
4

)

∣∣∣∣∣∣∣
v=x+i/2

,

b(2)
3 (x) =

1 · 4

( 2 + 3 ) · ( 1 + 2 + 3 + 4 )

∣∣∣∣
v=x

,
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1
2
3
·
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4
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4
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4
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,

b(2)
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1
2 · 2

4(
1
2 + 1

3 + 1
4
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·
(
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2 + 1

3 + 2
3
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3
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4
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v=x

, (10)

where we have used an abbreviated notation using Young tableaux,

j = λ j(v) ,
j
k

= λ j(v− i/2)λk(v+ i/2) ,

j
k
l

= λ j(v− i)λk(v)λl(v+ i) , ( j ≤ k≤ l) . (11)

Unfortunately, no general scheme to construct these functions has been found
so far. Hence, the auxiliary functions are only known for models with a fixed num-
ber of states q≤ 4 including all possible gradings. For general models with sl(n)
symmetry, the number of necessary functions is conjectured to be the sum of
the dimensions of all fundamental representations, i.e. 2n−2. Only half as many
functions, 2n−1−1, will be needed in the case of sl(n|1)-symmetric models.

Starting from the auxiliary functions b(n)
j (x) and B(n)

j (x) = b(n)
j (x)+1, for which

the approximate positions of roots and poles are known from numerical calcula-
tions, the derivation is quite straightforward but lengthy. The key idea is to apply
a Fourier transformation to the logarithmic derivative of all auxiliary functions
and to exploit their analyticity properties in Fourier space. Eventually, relations
among the auxiliary functions can be established, which form a set of coupled
nonlinear integral equations of convolution type,

lnb(n)
j (x) = −β

(
V(n)(x)+c(n)

j

)
−∑

m,k

[
K(n,m)

j ,k ∗ lnB(m)
k

]
(x). (12)

The driving terms V(n)(x), constants c(n)
j and matrices of kernel functions

K(n,m)(x) directly follow from the derivation. It is important to note that the Trot-
ter number N appears explicitly only in the functions V(n)(x) for which the limit
N → ∞ can easily be taken analytically.

In our example, the sl(4) case, the functions V(n)(x) and constants c(n)
j are

V(n)(x) =
π
2

sin(πn/4)

cosh(πx/2)−cos(πn/4)
, (13)

c(1)
1 = (−3µ1+µ2+µ3+µ4)/4, c(1)

2 = (µ1−3µ2+µ3+µ4)/4,

c(1)
3 = (µ1+µ2−3µ3+µ4)/4, c(1)

4 = (µ1+µ2+µ3−3µ4)/4,

c(2)
1 = (−µ1−µ2+µ3+µ4)/2, c(2)

2 = (−µ1+µ2−µ3+µ4)/2,

c(2)
3 = (−µ1+µ2+µ3−µ4)/2, c(2)

4 = (µ1−µ2−µ3+µ4)/2,

c(2)
5 = (µ1−µ2+µ3−µ4)/2, c(2)

6 = (µ1+µ2−µ3−µ4)/2,

c(3)
1 = (−µ1−µ2−µ3+3µ4)/4, c(3)

2 = (−µ1−µ2+3µ3−µ4)/4,

c(3)
3 = (−µ1+3µ2−µ3−µ4)/4, c(3)

4 = (3µ1−µ2−µ3−µ4)/4. (14)

The kernel matrices K(n,m)(x) are explicitly given by

K(1,1)(x) =




K0(x) K1(x) K1(x) K1(x)
K2(x) K0(x) K1(x) K1(x)
K2(x) K2(x) K0(x) K1(x)
K2(x) K2(x) K2(x) K0(x)


= K(3,3)(x) ,

K(2,2)(x) =




K3(x) K4(x) K4(x) K4(x) K4(x) K6(x)
K5(x) K3(x) K4(x) K4(x) K8(x) K4(x)
K5(x) K5(x) K3(x) K10(x) K4(x) K4(x)
K5(x) K5(x) K10(x) K3(x) K4(x) K4(x)
K5(x) K9(x) K5(x) K5(x) K3(x) K4(x)
K7(x) K5(x) K5(x) K5(x) K5(x) K3(x)




,

K(1,2)(x) =




K11(x) K11(x) K11(x) K12(x) K12(x) K12(x)
K11(x) K14(x) K14(x) K11(x) K11(x) K12(x)
K13(x) K11(x) K14(x) K11(x) K14(x) K11(x)
K13(x) K13(x) K11(x) K13(x) K11(x) K11(x)


= [K(2,1)(x)]† ,

K(1,3)(x) =




K15(x) K15(x) K15(x) K16(x)
K15(x) K15(x) K18(x) K15(x)
K15(x) K19(x) K15(x) K15(x)
K17(x) K15(x) K15(x) K15(x)


= [K(3,1)(x)]† ,

K(2,3)
j ,k (x) = K(1,2)

5−k,7− j(x) , K(3,2)(x) = [K(2,3)(x)]† , (15)

where the kernels K j(x) are defined as K j(x) =
∫ ∞
−∞ K̂ j(k)eikxdk with

K̂0(k) = K̂ (1,1)(k) , K̂1(k) = K̂ (1,1)(k)+e−k/2−|k|/2,

K̂2(k) = K̂ (1,1)(k)+ek/2−|k|/2, K̂3(k) = K̂ (2,2)(k) ,

K̂4(k) = K̂ (2,2)(k)+e−k/2−|k|/2, K̂5(k) = K̂ (2,2)(k)+ek/2−|k|/2,

K̂6(k) = K̂ (2,2)(k)+e−k−|k| , K̂7(k) = K̂ (2,2)(k)+ek−|k| ,

K̂8(k) = K̂ (2,2)(k)+2e−k/2−|k|/2, K̂9(k) = K̂ (2,2)(k)+2ek/2−|k|/2,

K̂10(k) = K̂ (2,2)(k)+e−|k| , K̂11(k) = K̂ (1,2)(k) ,

K̂12(k) = K̂ (1,2)(k)+e−k−|k|/2−e−k/2, K̂13(k) = K̂ (1,2)(k)+ek−|k|/2−ek/2 ,

K̂14(k) = K̂ (1,2)(k)+e−|k|/2, K̂15(k) = K̂ (1,3)(k) ,

K̂16(k) = K̂ (1,3)(k)+e−3k/2−|k|/2−e−k , K̂17(k) = K̂ (1,3)(k)+e3k/2−|k|/2−ek ,

K̂18(k) = K̂ (1,3)(k)+e−k/2−|k|/2−1, K̂19(k) = K̂ (1,3)(k)+ek/2−|k|/2. (16)

The function K̂ (n,m)(k) is related to the S-matrix and is given by

K̂ (n,m)(k) = e|k|/2 sinh(min(n,m)k/2)sinh([4−max(n,m)]k/2)

sinh(k/2)sinh(2k)
−δn,m. (17)

We note that in spectral parameter space all kernel functions can be written in
terms of digamma and simple rational functions.

Finally, the largest eigenvalue can be recovered from the auxiliary functions,

lnΛmax(0) = −βe0+∑
n, j

[
V(n) ∗ lnB(n)

j

]
(0) , (18)

where e0 is the ground-state energy, which also follows from the previous calcu-
lations. For the sl(4) case, we get e0 = 1−π/4−3ln(2)/2−∑4

j=1µj/4.
Therefore, the problem of solving the infinitely many BA equations (8) in the

limit N → ∞ has been reduced to finding a finite set of functions satisfying the
NLIE (12). The NLIE are valid for arbitrary finite temperature and chemical po-
tentials. In particular, the evaluation at low temperature poses no problem.

We like to note that there exists yet another type of NLIE, which have already
been generalized for Uimin-Sutherland models of arbitrary type [2]. However,
these prove difficult to evaluate at low temperature. Only high-temperature ex-
pansions, albeit to a very high degree (∼ 40), have been obtained in that way.

4 Numerical results

As the NLIE (12) are of convolution type, they are well suited for a numerical
solution by iteration utilizing the fast Fourier transform algorithm. In the following,
we present some results for the SU(4) spin-orbital model (9). The entropy S,
specific heat C, magnetization M and magnetic susceptibility χ in the case
gS = 1, gτ = 0 for various magnetic fields are shown below. The critical field
is hc = 2ln2≈ 1.39. For h≥ hc all spins are fully polarized in the ground state.
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We also present results for the case gS= 1, gτ = 2. In this case there are three
critical magnetic fields. We find that hc1 = 4, hc2 ≈ 0.941and hc3 ≈ 0.370.
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The critical fields follow directly from the T → 0 limit of our NLIE. The phase
diagram for fixed gS= 1 is shown below on the left. The figure on the right shows
the zero field susceptibility for the case gS = 1, gτ = 0 featuring a typical loga-
rithmic singularity at T = 0. For the lowest plotted temperature, T = 10−10, the
susceptibility is still well above the ground-state value χ0 = 2/π2 ≈ 0.2026.
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