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Abstract

We derive a finite set of nonlinear integral equations (NLIE) for the thermody-
namics of the one-dimensional sl(4)-symmetric Uimin-Sutherland model. Our NLIE
can be evaluated numerically for arbitrary finite temperature and chemical poten-
tials. We recover the NLIE for sl(3) as a limiting case. In comparison to other
recently derived NLIE, the evaluation at low temperature poses no problem in our
formulation. The model shows a rich ground-state phase diagram. We obtain the
critical fields from the T → 0 limit of our NLIE. As an example for the application
of the NLIE, we give numerical results for the SU (4) spin-orbital model. The mag-
netic susceptibility shows divergences at critical fields in the low-temperature limit
and logarithmic singularities for zero magnetic field.

PACS: 02.30.Ik, 05.70.–a, 75.10.Jm

1 Introduction

Since Bethe’s seminal solution of the one-dimensional spin-1/2 Heisenberg chain [1],
many integrable, natural generalisations of this model have been treated using basi-
cally the same ansatz. Among them is a multi-component, higher-rank generalisation
of the Heisenberg chain, first proposed by Uimin for the case of three components [2].
Later, Sutherland introduced and solved the model for an arbitrary number of parti-
cle types [3]. The two-dimensional classical model associated with the one-dimensional
Uimin-Sutherland (US) model is the Perk-Schultz (PS) model [4]. The case of higher-rank
representations of the underlying symmetry algebra was treated by Andrei and Johan-
nesson [5, 6]. Affleck calculated the critical behaviour based on non-Abelian bosonisation
and conformal field theory [7, 8].
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The traditional thermodynamic Bethe ansatz (TBA) allows for the treatment of
finite-temperature properties [9–12]. It uses the string hypothesis and typically yields
an infinite set of nonlinear integral equations (NLIE). The numerical solution of these
equations poses a problem as some kind of truncation scheme is necessary. Only in the
limit T → 0 one obtains a finite set of equations. Using the TBA approach for the
general US model [13], the low-field asymptotics of the susceptibility [14] as well as the
low-temperature asymptotics of the specific heat [15, 16] have been derived analytically.

With the help of the quantum transfer matrix (QTM) formalism [17, 18] and the
fusion hierarchy of transfer matrices [19–24], it is possible to rederive the TBA equations
without using the string hypothesis [25]. Using the QTM it is also possible to derive
an alternative set of NLIE consisting only of a finite number of unknown auxiliary
functions [26–29], thus allowing for a precise numerical treatment at arbitrary finite
temperature. Later it was realised that these auxiliary functions provide a natural way
to exactly truncate the TBA equations [30]. Nevertheless, no straightforward way of
getting the required auxiliary functions is known. Up to now, NLIE of this type have
only been derived for three components at most [31–33].

There exists yet another type of NLIE [34], which allows for the generalisation to
an arbitrary number of components [35]. Unfortunately, these NLIE prove difficult to
evaluate at low temperature. Instead, high-temperature expansions (HTE) have been
obtained up to high order [35, 36]. Very recently, these equations have been further
generalised to treat Uq(ŝl(r|s))-symmetric PS models [37].

In this paper, we treat the four-state, sl(4)-symmetric US model in the spirit of [29].
We define 14 suitable auxiliary functions, from which we derive a set of well-posed NLIE
that are valid for arbitrary finite temperature and chemical potentials. The auxiliary
functions are connected to the fundamental representations of sl(4). Our NLIE are the
natural generalisation of those obtained for the sl(3)-symmetric case [33].

The sl(4)-symmetric US model has many interesting applications. As an example,
we treat the SU (4) spin-orbital model [38, 39]. The thermodynamic properties of this
model have already been studied numerically using various methods [37, 40–42]. The
ground-state phase diagram in dependence of the magnetic field and the orbital Landé
factor has also been obtained [43]. In comparison to these methods, we are able to obtain
highly accurate numerical results for low finite temperatures in the thermodynamic limit.
Other possible applications of the sl(4)-symmetric US model include an integrable two-
leg spin ladder system [44], which has recently been studied numerically using the HTE
and TBA methods [45, 46].

The outline of this paper is as follows. In Section 2, we briefly introduce the q-state
US model and show how its thermodynamic properties can be obtained using the QTM
approach. In Section 3, we concentrate on the sl(4)-symmetric case. We present a set
of 14 well-posed auxiliary functions, from which we derive a closed set of NLIE. We
show how the largest eigenvalue of the QTM can be extracted from these auxiliary
functions. In Section 4, we treat two limiting cases of our NLIE. First, the NLIE and
auxiliary functions of the sl(3)-symmetric case are recovered by freezing out one of the
states. Second, the limit T → 0 yields linearised integral equations, which are equivalent
to the corresponding TBA equations and allow for the derivation of the critical fields.
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Rβν
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Figure 1: Graphical depiction of the R-matrix as defined in equation (3).

In Section 5, we deal with the numerical solution of our NLIE. We briefly introduce
the SU (4) spin-orbital model as an application and give results for various physical
quantities. In Section 6, we give a summary of our work and an outlook on open problems.
Appendix A is devoted to details concerning the derivation of the NLIE.

2 QTM approach to the US model

In order to fix notation, we begin with a short review of the Uimin-Sutherland (US)
model [2, 3]. Consider a one-dimensional lattice with L sites, where a q-state spin variable
αj is assigned to each site j. Each spin α has its own grading εα = (−1)p(α) = ±1. The
Hamiltonian of the US model is then given by

H0 =

L∑

j=1

πj,j+1 , (1)

where the local interaction operator πj,j+1 permutes neighbouring spins on the lattice
with respect to their grading,

πj,j+1|α1 . . . αjαj+1 . . . αL〉 = (−1)p(αj)p(αj+1)|α1 . . . αj+1αj . . . αL〉 , (2)

and periodic boundary conditions are imposed. The model shows sl(r|s) symmetry, where
r and s are the total number of states with positive and negative grading (q = r + s),
respectively. It is therefore a higher rank generalisation of the spin-1/2 Heisenberg chain,
which is contained as the special case q = 2 and ε1 = ε2 = +1.

The one-dimensional US model is known to be exactly solvable by Bethe ansatz (BA).
The two-dimensional classical counterpart is given by the Perk-Schultz (PS) model [4],
which is defined on a square lattice with L × N sites and periodic boundary conditions
in both directions. Variables taking on integer values from 1 to q are assigned to each
bond of the lattice, and a Boltzmann weight depending on a spectral parameter v,

Rβν
αµ(v) = δανδµβ + v · (−1)p(α)p(µ) · δαβδµν , (3)

is associated to every local vertex configuration (α, β, µ, ν), see Figure 1. We define the
row-to-row transfer matrix

T β
α (v) =

∑

{ν}

L∏

j=1

R
βjνj+1

αjνj
(v) . (4)
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As the R-matrix (3) is a solution to the Yang-Baxter equation, these transfer matrices
form a commuting family [T (v),T (v′)] = 0 for all v, v′ ∈ C. Making use of Baxter’s
formula [47], one recovers the Hamiltonian of the US model from the transfer matrix of
the PS model at the shift point v = 0,

H0 =
d

dv
ln T (v)

∣∣∣∣
v=0

=
L∑

j=1

πj,j+1 . (5)

Without breaking integrability, we may add external field terms,

H = H0 + Hext = H0 −
L∑

j=1

q∑

α=1

µαnj,α , (6)

where µα is some general chemical potential associated with state α and the operator
nj,α counts the number of particles of type α sitting on site j.

We are interested in the thermodynamics of the US model. Hence, we want to estab-
lish some connection between its partition function and the transfer matrix of the PS
model. We therefore consider a second R-matrix, namely R(v), obtained by rotating the
graphical depiction of R(v) clockwise by 90 degrees,

R
βν
αµ(v) = Rµβ

να(v) . (7)

We define the transfer matrix T (v) as the product of matrices R(v) in analogy to (4).
Equation (5) now also applies to T (v), and as a consequence the relation

T (−β/N)T (−β/N) = e−2(β/N)H0+O((β/N)2) (8)

is valid for arbitrary inverse temperature β and a sufficiently large even integer Trotter
number N . The partition function of the one-dimensional US model is then given by

Z = Tr e−βH = lim
N→∞

Tr
[(
T (u)T (u)

)N/2
e−βHext

]
, (9)

where u = −β/N and the traces are taken in the qL-dimensional space. Obviously, the
partition function of the one-dimensional US model is equal to the partition function of
a staggered two-dimensional PS model, where the external field can be incorporated by
modifying the boundary conditions in the Trotter direction. Equation (9) is still difficult
to evaluate, e.g. all eigenstates have to be taken into account. To avoid this problem, it is
better to consider the column-to-column transfer matrix of the staggered vertex model,
which is called the quantum transfer matrix (QTM) [17, 18]. In order to write down the
QTM in a convenient way, we first define the matrix R̃(v), which we get by rotating
R(v) counterclockwise by 90 degrees and changing the sign of the spectral parameter,

R̃βν
αµ(v) = Rνα

µβ(−v) . (10)
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Then the QTM takes the form

(
T QTM

)β

α
(v) =

∑

{ν}

eβµν1

N/2∏

j=1

R
β2j−1ν2j
α2j−1ν2j−1

(iv + u)R̃
β2jν2j+1

α2jν2j
(iv − u) , (11)

where we have introduced a new spectral parameter v, so that the QTMs for all v, v′ ∈ C

form a commuting family,
[
T QTM(v),T QTM(v′)

]
= 0 . (12)

This allows for the diagonalisation by use of the BA. In the end, we are only interested
in the case v = 0 as the partition function of the one-dimensional US model in terms of
the QTM is

Z = lim
N→∞

Tr
(
T QTM(0)

)L
. (13)

In the thermodynamic limit (L → ∞) one finds that the thermodynamics of the US
model solely depends on the unique largest eigenvalue of the QTM [48, 49]. For the free
energy per unit length, we finally get

f = − lim
L→∞

1

Lβ
ln Z = − 1

β
ln Λmax(0) , (14)

where Λmax(v) is the largest eigenvalue of the QTM.
As noted before, the QTM can be diagonalised via BA. The result for the eigenvalue

is [50]

Λ(v) =

q∑

j=1

λj(v) , (15)

where

λj(v) = φ−(v)φ+(v)
qj−1(v − iεj)

qj−1(v)

qj(v + iεj)

qj(v)
eβµj . (16)

For convenience, we have defined the functions φ±(v) = (v ± iu)N/2 and

qj(v) =





φ−(v) for j = 0
∏Mj

kj=1(v − vj
kj

) for j = 1, . . . , q − 1

φ+(v) for j = q

, (17)

where the complex parameters vj
kj

are the so-called BA roots and Mj is the total number
of BA roots in set j. The BA roots have to fulfil the BA equations

λj(v
j
kj

)

λj+1(v
j
kj

)
= −1 , (18)

to ensure that all potential poles in the expression (15) for Λ(v), which has to be a
polynomial of degree N , cancel. The BA equations form a system of coupled nonlinear
equations for the unknown BA roots.
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3 Nonlinear integral equations for the sl(4) case

Let us now turn to the special case of the sl(4)-symmetric Uimin-Sutherland model
(q = 4, εj = +1 for all j). The largest eigenvalue of the QTM lies in the sector Mj = N/2
for all j. Of course, it is in principle possible to solve the BA equations (18) for some
fixed Trotter number N . But this approach is possible only for finite N and is also quite
cumbersome to do numerically. As we are interested in the limit N → ∞ for deriving
the free energy of the model, we have to encode the BA equations into a form for which
this limit can be taken analytically.

We start by defining some suitable auxiliary functions, which will in the end turn out
to fulfil certain nonlinear integral equations. For convenience, we will use an abbreviated
notation utilising the Yangian analogue of Young tableaux [20, 51–53]. Instead of the
function λj(v), we will write a box filled with the letter j,

j = λj(v) . (19)

This corresponds to a Young tableau belonging to a vector of the first, four-dimensional
fundamental representation of sl(4). We also define a Young tableau belonging to the
second, six-dimensional representation,

j
k

= λj(v − i/2)λk(v + i/2) , (20)

and for the conjugate four-dimensional representation we have

j
k
l

= λj(v − i)λk(v)λl(v + i) . (21)

From fusion hierarchy [22, 25] one knows that the eigenvalues of the QTMs belonging
to the three fundamental representations can be written as

Λ(1)(x) = 1 + 2 + 3 + 4
∣∣
v=x

, (22a)

Λ(2)(x) = 1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

∣∣∣∣
v=x

, (22b)

Λ(3)(x) =
1
2
3

+
1
2
4

+
1
3
4

+
2
3
4

∣∣∣∣∣∣
v=x

, (22c)

where the superscripts denote the representations. In all three cases the BA equa-
tions (18) ensure that the eigenvalues are free of poles. We note that (22a) is equiv-
alent to (15). We define the following four auxiliary functions for the first fundamental
representation:

b
(1)
1 (x) =

1

2 + 3 + 4

∣∣∣∣
v=x+i/2

, (23a)
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b
(1)
2 (x) =

1
2

·
(

2
3

+ 2
4

+ 3
4

)

(
1
3

+ 1
4

)
·
(

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

)

∣∣∣∣∣∣∣∣
v=x

, (23b)

b
(1)
3 (x) =

1
3

· 3
4

1
4

·
(

1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

)

∣∣∣∣∣∣∣∣
v=x

, (23c)

b
(1)
4 (x) =

4

1 + 2 + 3

∣∣∣∣
v=x−i/2

. (23d)

We have six auxiliary functions for the second fundamental representation:

b
(2)
1 (x) =

1
2

1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

∣∣∣∣∣∣∣∣
v=x+i/2

, (24a)

b
(2)
2 (x) =

1
3

· 3
4(

1
4

+ 2
4

+ 3
4

)
·
(

2
3

+ 2
4

+ 3
4

)

∣∣∣∣∣∣∣∣
v=x+i/2

, (24b)

b
(2)
3 (x) =

1 · 4(
2 + 3

)
·
(

1 + 2 + 3 + 4
)
∣∣∣∣∣
v=x

, (24c)

b
(2)
4 (x) =

1
2
3

·
2
3
4


1
2
4

+
1
3
4


 ·




1
2
3

+
1
2
4

+
1
3
4

+
2
3
4




∣∣∣∣∣∣∣∣∣∣∣∣
v=x

, (24d)

b
(2)
5 (x) =

1
2

· 2
4(

1
2

+ 1
3

+ 1
4

)
·
(

1
2

+ 1
3

+ 2
3

)

∣∣∣∣∣∣∣∣
v=x−i/2

, (24e)

b
(2)
6 (x) =

3
4

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

∣∣∣∣∣∣∣∣
v=x−i/2

. (24f)
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And finally, the four auxiliary functions for the third fundamental representation are:

b
(3)
1 (x) =

1
2
3

1
2
4

+
1
3
4

+
2
3
4

∣∣∣∣∣∣∣∣∣∣∣
v=x+i/2

, (25a)

b
(3)
2 (x) =

1
2

· 2
4

2
3

·
(

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

)

∣∣∣∣∣∣∣∣
v=x

, (25b)

b
(3)
3 (x) =

3
4

·
(

1
2

+ 1
3

+ 1
4

)

(
2
3

+ 2
4

)
·
(

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

)

∣∣∣∣∣∣∣∣
v=x

, (25c)

b
(3)
4 (x) =

2
3
4

1
2
3

+
1
2
4

+
1
3
4

∣∣∣∣∣∣∣∣∣∣∣
v=x−i/2

. (25d)

In addition to the auxiliary functions above, we define a second set of functions, namely

B
(n)
j (x) = b

(n)
j (x) + 1. These can also be written in a form, where only simple sums of

Young tableaux appear as factors in the numerators and denominators, and all factors

appearing in the set of functions b
(n)
j (x) also appear in the set of functions B

(n)
j (x).

We note that all these factors are partial sums of the Young tableaux appearing in the
eigenvalues (22). The set of functions (23) is related to (25) by a conjugation transfor-
mation. The set (24) is self-conjugate in this sense. Furthermore, all auxiliary functions
are rational functions in terms of the spectral parameter x and are analytic, non-zero
and have constant asymptotics (ANZC) in a strip −1/2 . =(x) . 1/2.

Now, the actual calculation is rather straightforward but lengthy. Therefore, details
are deferred to Appendix A. The key idea is to apply a Fourier transform to the loga-
rithmic derivative of all auxiliary functions and to exploit their analyticity properties in
Fourier space. We like to stress that, although we are working with arbitrary finite N
throughout the derivation, in the end the limit N → ∞ can be taken analytically.

We finally arrive at a system of coupled nonlinear integral equations (NLIE) of the
form

b(x) = −βε(x) −
[
K ∗ B

]
(x) , (26)

where we have defined

b =
(
ln b

(1)
1 , . . . , ln b

(1)
4 , ln b

(2)
1 , . . . , ln b

(2)
6 , ln b

(3)
1 , . . . , ln b

(3)
4

)T
, (27)
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B =
(
ln B

(1)
1 , . . . , ln B

(1)
4 , ln B

(2)
1 , . . . , ln B

(2)
6 , ln B

(3)
1 , . . . , ln B

(3)
4

)T
, (28)

ε =
(
ε
(1)
1 , . . . , ε

(1)
4 , ε

(2)
1 , . . . , ε

(2)
6 , ε

(3)
1 , . . . , ε

(3)
4

)T
. (29)

Convolutions are denoted by

[
f ∗ g

]
(x) =

∫ ∞

−∞
f(x − y)g(y)

dy

2π
. (30)

The kernel matrix K(x) is a 14 by 14 matrix. As this is too large to be displayed as a
whole, we divide the matrix into blocks connecting the auxiliary functions from different
representations,

K(x) =




K
(1,1)(x) K

(1,2)(x) K
(1,3)(x)

K
(2,1)(x) K

(2,2)(x) K
(2,3)(x)

K
(3,1)(x) K

(3,2)(x) K
(3,3)(x)


 . (31)

Obviously, K
(1,1)(x) is a 4 by 4 matrix, while K

(1,2)(x) is a 4 by 6 matrix, etc. K(x) is
Hermitian and invariant under reflection along the anti-diagonal,

K(x) =
[
K(x)

]†
,

[
K(x)

]
j,k

=
[
K(x)

]
15−k,15−j

. (32)

Therefore we only need to consider

K
(1,1)(x) =




K0(x) K1(x) K1(x) K1(x)
K2(x) K0(x) K1(x) K1(x)
K2(x) K2(x) K0(x) K1(x)
K2(x) K2(x) K2(x) K0(x)


 , (33a)

K
(1,2)(x) =




K11(x) K11(x) K11(x) K12(x) K12(x) K12(x)
K11(x) K14(x) K14(x) K11(x) K11(x) K12(x)
K13(x) K11(x) K14(x) K11(x) K14(x) K11(x)
K13(x) K13(x) K11(x) K13(x) K11(x) K11(x)


 , (33b)

K
(1,3)(x) =




K15(x) K15(x) K15(x) K16(x)
K15(x) K15(x) K18(x) K15(x)
K15(x) K19(x) K15(x) K15(x)
K17(x) K15(x) K15(x) K15(x)


 , (33c)

K
(2,2)(x) =




K3(x) K4(x) K4(x) K4(x) K4(x) K6(x)
K5(x) K3(x) K4(x) K4(x) K8(x) K4(x)
K5(x) K5(x) K3(x) K10(x) K4(x) K4(x)
K5(x) K5(x) K10(x) K3(x) K4(x) K4(x)
K5(x) K9(x) K5(x) K5(x) K3(x) K4(x)
K7(x) K5(x) K5(x) K5(x) K5(x) K3(x)




. (33d)

The remaining matrices easily follow from the relations

K
(3,3)(x) = K

(1,1)(x) , K
(2,1)(x) =

[
K

(1,2)(x)
]†

, (34a)
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K
(3,1)(x) =

[
K

(1,3)(x)
]†

, K
(3,2)(x) =

[
K

(2,3)(x)
]†

, (34b)
[
K

(2,3)(x)
]
j,k

=
[
K

(1,2)(x)
]
7−k,5−j

. (34c)

The kernels are defined as Kj(x) =
∫ ∞
−∞ K̂j(k)eikx dk, where

K̂0(k) = K̂
(1,1)
[4] (k) , K̂1(k) = K̂

(1,1)
[4] (k) + e−k/2−|k|/2 , (35a)

K̂2(k) = K̂
(1,1)
[4] (k) + ek/2−|k|/2 , K̂3(k) = K̂

(2,2)
[4] (k) , (35b)

K̂4(k) = K̂
(2,2)
[4] (k) + e−k/2−|k|/2 , K̂5(k) = K̂

(2,2)
[4] (k) + ek/2−|k|/2 , (35c)

K̂6(k) = K̂
(2,2)
[4] (k) + e−k−|k| , K̂7(k) = K̂

(2,2)
[4] (k) + ek−|k| , (35d)

K̂8(k) = K̂
(2,2)
[4] (k) + 2e−k/2−|k|/2 , K̂9(k) = K̂

(2,2)
[4] (k) + 2ek/2−|k|/2 , (35e)

K̂10(k) = K̂
(2,2)
[4] (k) + e−|k| , K̂11(k) = K̂

(1,2)
[4] (k) , (35f)

K̂12(k) = K̂
(1,2)
[4] (k) + e−k−|k|/2 − e−k/2 , K̂13(k) = K̂

(1,2)
[4] (k) + ek−|k|/2 − ek/2 , (35g)

K̂14(k) = K̂
(1,2)
[4]

(k) + e−|k|/2 , K̂15(k) = K̂
(1,3)
[4]

(k) , (35h)

K̂16(k) = K̂
(1,3)
[4] (k) + e−3k/2−|k|/2 − e−k , K̂17(k) = K̂

(1,3)
[4] (k) + e3k/2−|k|/2 − ek , (35i)

K̂18(k) = K̂
(1,3)
[4] (k) + e−k/2−|k|/2 − 1 , K̂19(k) = K̂

(1,3)
[4] (k) + ek/2−|k|/2 , (35j)

with the function

K̂
(n,m)
[q] (k) = e|k|/2 sinh(min(n,m)k/2) sinh([q − max(n,m)]k/2)

sinh(k/2) sinh(qk/2)
− δnm . (36)

We note that in spectral parameter space all kernels can be written in terms of digamma
and simple rational functions. Nevertheless our notation is more useful here as the nu-
merical treatment of the NLIE can be conveniently done in Fourier space. The functions

K
(n,m)
[q] (x) =

∫ ∞
−∞ K̂

(n,m)
[q] (k)eikx dk are related to the S-matrix of elementary excita-

tions [54] via

K
(n,m)
[q] (x) =

d

dx
[i ln S

(n,m)
[q] (x)] . (37)

The bare energies in (29) are ε
(n)
j (x) = V

(n)
[4] (x) + c

(n)
j , where

V
(n)
[q] (x) =

2π

q

sin(πn/q)

cosh(2πx/q) − cos(πn/q)
, (38)

and the constants are given by

c
(1)
1 = (−3µ1 + µ2 + µ3 + µ4)/4 , c

(1)
2 = (µ1 − 3µ2 + µ3 + µ4)/4 , (39a)

c
(1)
3 = (µ1 + µ2 − 3µ3 + µ4)/4 , c

(1)
4 = (µ1 + µ2 + µ3 − 3µ4)/4 , (39b)

c
(2)
1 = (−µ1 − µ2 + µ3 + µ4)/2 , c

(2)
2 = (−µ1 + µ2 − µ3 + µ4)/2 , (39c)
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c
(2)
3 = (−µ1 + µ2 + µ3 − µ4)/2 , c

(2)
4 = (µ1 − µ2 − µ3 + µ4)/2 , (39d)

c
(2)
5 = (µ1 − µ2 + µ3 − µ4)/2 , c

(2)
6 = (µ1 + µ2 − µ3 − µ4)/2 , (39e)

c
(3)
1 = (−µ1 − µ2 − µ3 + 3µ4)/4 , c

(3)
2 = (−µ1 − µ2 + 3µ3 − µ4)/4 , (39f)

c
(3)
3 = (−µ1 + 3µ2 − µ3 − µ4)/4 , c

(3)
4 = (3µ1 − µ2 − µ3 − µ4)/4 . (39g)

Finally, the largest eigenvalue of the QTM can be written in terms of the auxiliary
functions,

ln Λmax(0) = −β

(
1 − π

4
− 3

2
ln 2 − 1

4

4∑

j=1

µj

)
+

3∑

n=1

dn∑

j=1

[
V

(n)
[4] ∗ ln B

(n)
j

]
(0) , (40)

where dn =
(
4
n

)
is the dimension of the nth fundamental representation. Therefore, the

problem of solving the infinitely many BA equations (18) in the limit N → ∞ has been
reduced to finding a finite set of functions satisfying the NLIE (26)–(39). The NLIE is
valid for arbitrary finite temperature and chemical potentials.

4 Analytical investigation

4.1 Investigation of the sl(3) limit

First we want to show how our formulation (26)–(40) reduces to the known NLIE for the
sl(3)-symmetric case [33] by freezing out one of the states. We choose the state α = 4
and accordingly treat the limit µ4 → −∞. We observe that

b
(1)
1 (x) = O(1) , b

(1)
2 (x) = O(1) , b

(1)
3 (x) = O(1) , (41a)

b
(1)
4 (x) = O(eβµ4) , b

(2)
1 (x) = O(1) , b

(2)
2 (x) = O(1) , (41b)

b
(2)
3 (x) = O(eβµ4) , b

(2)
4 (x) = O(1) , b

(2)
5 (x) = O(eβµ4) , (41c)

b
(2)
6 (x) = O(eβµ4) , b

(3)
1 (x) = O(e−βµ4) , b

(3)
2 (x) = O(eβµ4) , (41d)

b
(3)
3 (x) = O(eβµ4) , b

(3)
4 (x) = O(eβµ4) . (41e)

Therefore only seven of the auxiliary functions survive. We can regard

b
(1)
4 (x) ≡ b

(2)
3 (x) ≡ b

(2)
5 (x) ≡ b

(2)
6 (x) ≡ b

(3)
2 (x) ≡ b

(3)
3 (x) ≡ b

(3)
4 (x) ≡ 0 . (42)

We also conclude that b
(3)
1 (x)/B

(3)
1 (x) → 1. Using this information, the equation for

ln b
(3)
1 (x) linearises and can be solved analytically. We get

ln B
(3)
1 (x) = −β

(
W (x) − µ1 + µ2 + µ3

3
+ µ4

)

−
[
V

(2)
[3] ∗ ln(B

(1)
1 B

(1)
2 B

(1)
3 )

]
(x) −

[
V

(1)
[3] ∗ ln(B

(2)
1 B

(2)
2 B

(2)
4 )

]
(x) , (43)
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where

W (x) =

∫ ∞

−∞

e−|k|/2

e−k + 1 + ek
eikx dk . (44)

Substituting this into our NLIE and relabelling b
(2)
4 (x) to b

(2)
3 (x), we are again left with

a NLIE of type (26), but with only six remaining auxiliary functions belonging to the
two fundamental representations of sl(3). Here we get the kernel matrix

K(x) =

(
K

(1,1)(x) K
(1,2)(x)

K
(1,2)(x) K

(1,1)(x)

)
, (45)

where the submatrices are given by

K
(1,1)(x) =




K0(x) K1(x) K1(x)
K2(x) K0(x) K1(x)
K2(x) K2(x) K0(x)


 , (46a)

K
(1,2)(x) =




K3(x) K3(x) K4(x)
K3(x) K6(x) K3(x)
K5(x) K3(x) K3(x)


 . (46b)

The Fourier transformed kernels are found to be

K̂0(k) = K̂
(1,1)
[3] (k) , K̂1(k) = K̂

(1,1)
[3] (k) + e−k/2−|k|/2 , (47a)

K̂2(k) = K̂
(1,1)
[3] (k) + ek/2−|k|/2 , K̂3(k) = K̂

(1,2)
[3] (k) , (47b)

K̂4(k) = K̂
(1,2)
[3] (k) + e−k−|k|/2 − e−k/2 , K̂5(k) = K̂

(1,2)
[3] (k) + ek−|k|/2 − ek/2 , (47c)

K̂6(k) = K̂
(1,2)
[3] (k) + e−|k|/2 . (47d)

For the bare energies, we get ε
(n)
j (x) = V

(n)
[3] (x) + c

(n)
j with the constants

c
(1)
1 = (−2µ1 + µ2 + µ3)/3 , c

(1)
2 = (µ1 − 2µ2 + µ3)/3 , (48a)

c
(1)
3 = (µ1 + µ2 − 2µ3)/3 , c

(2)
1 = (−µ1 − µ2 + 2µ3)/3 , (48b)

c
(2)
2 = (−µ1 + 2µ2 − µ3)/3 , c

(2)
3 = (2µ1 − µ2 − µ3)/3 . (48c)

The largest eigenvalue is finally given by

ln Λmax(0) = −β

(
1 − π

3
√

3
− ln 3 − 1

3

3∑

j=1

µj

)
+

2∑

n=1

3∑

j=1

[
V

(n)
[3] ∗ ln B

(n)
j

]
(0) . (49)

As expected, this is exactly the known NLIE for the sl(3)-symmetric case [33].
We can also recover the explicit form of all auxiliary functions for the sl(3) case.

We drop all Young tableaux that contain 4 in the auxiliary functions (23)–(25) as
λ4(v) → 0 in the limit µ4 → −∞. We have already seen that seven of the functions
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become zero, while one function diverges. After relabelling b
(2)
4 (x) to b

(2)
3 (x) again, the

remaining six functions take the form

b
(1)
1 (x) =

1

2 + 3

∣∣∣∣
v=x+i/2

, b
(1)
2 (x) =

1
2

· 2
3

1
3

·
(

1
2

+ 1
3

+ 2
3

)

∣∣∣∣∣∣∣∣
v=x

, (50a)

b
(1)
3 (x) =

3

1 + 2

∣∣∣∣
v=x−i/2

, b
(2)
1 (x) =

1
2

1
3

+ 2
3

∣∣∣∣∣∣∣∣
v=x+i/2

, (50b)

b
(2)
2 (x) =

1 · 3

2 ·
(

1 + 2 + 3
)
∣∣∣∣∣
v=x

, b
(2)
3 (x) =

2
3

1
2

+ 1
3

∣∣∣∣∣∣∣∣
v=x−i/2

. (50c)

Although only two sets of BA roots are present in the sl(3) case, these auxiliary functions
still contain the function q3(v), which enters through λ3(v). But, as already indicated by
the definition of q3(v) for the case q = 3 in (17), we have to demand q3(v) = φ+(v) in the
limit µ4 → −∞ in order that the previously derived NLIE can also be derived directly
from the auxiliary functions (50). The auxiliary functions are equal to those presented
in [33].

We finally note that our choice of freezing out the state α = 4 is completely arbitrary.
Choosing one of the other states yields, after relabelling some of the indices, the same
NLIE and auxiliary functions. For µ1 → −∞, we find that q1(v) = φ−(v), while q2(v)
and q3(v) contain the remaining BA roots. For µα → −∞ with α = 2 or 3, we find that
qα−1(v) = qα(v).

4.2 Limit T → 0 and critical fields

We divide the NLIE (26) by β and define rescaled auxiliary functions by

e
(n)
j (x) =

1

β
ln b

(n)
j (x) , E

(n)
j (x) =

1

β
ln B

(n)
j (x) . (51)

In the limit T → 0 (β → ∞) we get

E
(n)
j (x) → e+(n)

j (x) =

{
e
(n)
j (x) if <(e

(n)
j (x)) > 0

0 if <(e
(n)
j (x)) ≤ 0

. (52)

Obviously, auxiliary functions with negative real parts for all x ∈ R do no longer con-

tribute to the ground-state energy, because e+(n)
j (x) ≡ 0 for these functions.

Without loss of generality, we choose the chemical potentials to be ordered, µ1 ≥
µ2 ≥ µ3 ≥ µ4. Changing the order just amounts to some permutation of indices in the
following calculations. In our case, we observe that the only remaining auxiliary functions
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are e
(n)
1 (x) for n = 1, 2, 3, i.e. one from every representation. The NLIE linearise and

take the form

e
(n)
1 (x) = −V

(n)
[4] (x) − c

(n)
1 −

3∑

m=1

[
K

(n,m)
[4] ∗ e+(m)

1

]
(x) (n = 1, 2, 3) . (53)

It follows that the remaining auxiliary functions are real and symmetric with respect to
the spectral parameter. The ground-state energy is given by

f0 = 1 − π

4
− 3

2
ln 2 − 1

4

4∑

j=1

µj −
3∑

n=1

[
V

(n)
[4] ∗ e+(n)

1

]
(0) . (54)

These equations have a particularly simple solution if all chemical potentials are equal,

µ1 = µ2 = µ3 = µ4. In this case, we get e
(n)
1 (x) = −V

(n)
[4] (x) and e+(n)

1 (x) ≡ 0 for all n.

Therefore, the ground-state energy is just f0 = 1 − π/4 − 3 ln(2)/2.
In general, depending on certain differences of the chemical potentials, the ground

state can be in one of four possible phases. We start with the phase, where all degrees
of freedom are frozen out, i.e. only the state α = 1 survives. In this case, we have

e
(n)
1 (x) = e+(n)

1 (x) for all n. As a consequence, (53) can be solved analytically. We find
the restriction µ1 − µ2 ≥ 4 and obtain

e
(1)
1 (x) = µ1 − µ2 −

4

4x2 + 1
, e

(2)
1 (x) = µ2 − µ3 , e

(3)
1 (x) = µ3 − µ4 , (55)

while the ground-state energy turns out to be f0 = 1−µ1. As expected, the ground state
is fully polarised. We call the point µ1 − µ2 = 4 the first critical field.

Below the first critical field, i.e. if µ1 − µ2 < 4, the function e
(1)
1 (x) possesses two

symmetrically distributed real roots, and we have e
(n)
1 (x) = e+(n)

1 (x) only for n = 2, 3.
We can still solve (53) for the latter two functions and get

e
(1)
1 (x) = −V

(1)
[2] (x) +

µ1 − µ2

2
−

[
K

(1,1)
[2] ∗ e+(1)

1

]
(x) , (56a)

e
(2)
1 (x) = K

(1,1)
[2] (x) +

1

2

2∑

j=1

(µj − µ3) −
[
V

(1)
[2] ∗ e+(1)

1

]
(x) , (56b)

e
(3)
1 (x) = µ3 − µ4 . (56c)

For the ground-state energy, we arrive at

f0 = 1 − 2 ln 2 − µ1 + µ2

2
−

[
V

(1)
[2]

∗ e+(1)
1

]
(x) . (57)

This is exactly the T = 0 behaviour of the spin-1/2 Heisenberg chain. Two states, α = 1
and 2, are present in the ground state. Note that these equations are valid only above

the second critical field, i.e. as long as e
(2)
1 (x) ≥ 0 for all x ∈ R. From (56b), we find the

restriction
2∑

j=1

(µj − µ3) ≥ 4 ln 2 + 2 ·
[
V

(1)
[2] ∗ e+(1)

1

]
(0) , (58)
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where the positive convolution term unfortunately still depends on the function e+(1)
1 (x),

which is not explicitly known. The convolution term vanishes if µ1 = µ2.
Below the second critical field, the state α = 3 also contributes to the ground state.

Both e
(1)
1 (x) and e

(2)
1 (x) possess two real roots, and only e

(3)
1 (x) = e+(3)

1 (x) remains valid.
Here, we recover the T = 0 behaviour of the sl(3)-symmetric US model,

e
(n)
1 (x) = −V

(n)
[3] (x) − c

(n)
1 −

2∑

m=1

[
K

(n,m)
[3] ∗ e+(m)

1

]
(x) (n = 1, 2) , (59a)

e
(3)
1 (x) = −W (x) +

1

3

3∑

j=1

(µj − µ4) −
2∑

n=1

[
V

(3−n)
[3] ∗ e+(n)

1

]
(x) , (59b)

where c
(n)
1 are the constants of the sl(3) case defined in (48). The ground-state energy

can be calculated by use of

f0 = 1 − π

3
√

3
− ln 3 − 1

3

3∑

j=1

µj −
2∑

n=1

[
V

(n)
[3] ∗ e+(n)

1

]
(0) . (60)

These equations hold as long as we are above the third and last critical field. We see
from (59b) that the restriction is

3∑

j=1

(µj − µ4) ≥ π
√

3 − 3 ln 3 + 3 ·
2∑

n=1

[
V

(3−n)
[3] ∗ e+(n)

1

]
(0) , (61)

where we again have no explicit expression for the positive convolution terms, which
vanish if µ1 = µ2 = µ3.

Finally, below the third and last critical field, all auxiliary functions possess two
symmetrically distributed real roots. Therefore, equations (53) and (54) have to be used
without further simplification. In this case, all four states contribute to the ground state.
We note that the equations (53) and (54) are equal to those one can get either from the
traditional TBA equations in the limit T → 0 or directly from the BA equations for the
Hamiltonian [13].

5 Numerical investigation

The NLIE of the sl(4)-symmetric Uimin-Sutherland model (26) are of a type that allows
for an efficient numerical solution by iteration and use of the fast Fourier transform (FFT)

to calculate the convolutions. As initial values, some discretised functions lnB
(n)
j (x)

are taken. The FFT is applied and the right-hand sides of the NLIE are computed in

Fourier space. After that, the functions ln b
(n)
j (x) are obtained using the inverse FFT to

eventually yield a new approximation for the functions lnB
(n)
j (x). These steps have to

be repeated, each time starting with the previous approximation for ln B
(n)
j (x), until the

numerical error is small enough. Finally, the free energy is calculated using (14) and (40).
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From our NLIE it is also possible to directly calculate derivatives of the free energy
with respect to some parameter p. We just have to consider the corresponding derivatives
of the NLIE and of the expression for the eigenvalue. For the first derivative, we exploit
the relation

∂

∂p
ln B

(n)
j (x) =

b
(n)
j (x)

B
(n)
j (x)

· ∂

∂p
ln b

(n)
j (x) (62)

and use an additional relation for the calculation of the second derivative,

∂2

∂p2
ln B

(n)
j (x) =

b
(n)
j (x)

B
(n)
j (x)

{
1

B
(n)
j (x)

(
∂

∂p
ln b

(n)
j (x)

)2

+
∂2

∂p2
ln b

(n)
j (x)

}
. (63)

In this case, the numerical calculation is done step by step. After solving the unmodified

NLIE to obtain ln B
(n)
j (x), its first and finally its second derivative are solved in an

analogous way. In each step, results from the previous calculations are used.
In the following, we will provide some numerical results for a special application of the

one-dimensional sl(4)-symmetric Uimin-Sutherland model. We consider the Hamiltonian

H =

L∑

j=1

(2SjSj+1 + 1/2)(2τjτj+1 + 1/2) −
L∑

j=1

(
gShSz

j + gτhτ z
j

)
, (64)

which describes the SU (4)-symmetric case of a SU (2)×SU (2) spin-orbital model at the
supersymmetric point. Sj is a SU (2) spin-1/2 operator acting on the spins and τj is a
SU (2) spin-1/2 operator acting on the orbital pseudo-spin degrees of freedom. We have
allowed for an external magnetic field h, which couples to the spins and orbital pseudo-
spins with Landé factors gS and gτ , respectively. Clearly, the Hamiltonian is equivalent
to the sl(4)-symmetric US Hamiltonian (6) if we use the basis

|1〉 = |↑S↑τ 〉 , |2〉 = |↑S↓τ 〉 , |3〉 = |↓S↑τ 〉 , |4〉 = |↓S↓τ 〉 (65)

and accordingly set

µ1 = (gS + gτ )h/2 , µ2 = (gS − gτ )h/2 , (66a)

µ3 = −(gS − gτ )h/2 , µ4 = −(gS + gτ )h/2 . (66b)

We are mainly interested in the entropy S, specific heat C, magnetisation M and
magnetic susceptibility χ, which are defined by

S = − ∂f

∂T
, C = −T

∂2f

∂T 2
, M = −∂f

∂h
, χ = −∂2f

∂h2
. (67)

In Figure 2 on the next page and Figure 3 on page 18, results are shown for the case
gS = 1 and gτ = 0, for which the magnetic field couples only to the spins. In this case,
we have µ1 = µ2 = h/2 and µ3 = µ4 = −h/2. Therefore we know from our analytical
investigation that there is only one critical field exactly at hc = 2 ln 2 ≈ 1.39. Below

16



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2

S

T

h=0.00
h=0.50
h=1.00

h=hc
h=1.50
h=2.00
h=2.50
h=3.00

 0

 0.05

 0.1

 0.15

 0  0.05  0.1

(a) Entropy vs. temperature.
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(b) Specific heat vs. temperature.

Figure 2: Entropy and specific heat of the spin-orbital model at gS = 1, gτ = 0 for
various magnetic fields. The insets show the low-temperature parts. The critical field is
hc = 2 ln 2 ≈ 1.39.
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(b) Magnetic susceptibility vs. temperature.

Figure 3: Magnetisation and magnetic susceptibility of the spin-orbital model at gS = 1,
gτ = 0 for various magnetic fields. The critical field is hc = 2 ln 2 ≈ 1.39.
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Figure 4: Magnetic susceptibility of the spin-orbital model at h = 0 for temperatures
down to T = 10−10. The cross denotes the ground-state value χ(0) = 2/π2 ≈ 0.2026.
The inset shows the low-temperature part of the susceptibility using a logarithmic scale.

the critical field, all four states contribute to the ground state. Above, the spins are
fully polarised and only the orbital degrees of freedom remain. Hence, the ground state
resembles that of the spin-1/2 Heisenberg chain. This phase transition is clearly exposed
by the numerical data. The low-temperature slopes both of the entropy and the specific
heat increase from 2 at h = 0 to infinity at h = hc, whereas they are 1/3 for h > hc.
Moreover, the magnetisation data show the expected saturation behaviour for h ≥ hc.
Notice also, that the magnetic susceptibility diverges at the critical field. Below, the
value at T = 0 stays finite; above, it drops to zero.

The magnetic susceptibility at h = 0 is particularly interesting as it is expected to
show a characteristic singular behaviour at T = 0 due to logarithmic corrections. Indeed,
this is confirmed by our results for the low-temperature susceptibility, see Figure 4. Even
for the lowest plotted temperature, T = 10−10, the susceptibility is still well above the
ground-state value χ(0) = 2/π2. For the spin-1/2 Heisenberg model, these corrections
have already been treated in detail [55–58]; similar results for sl(q)-symmetric US models
are known [14, 33].

We also consider the spin orbital-model at gS = 1 and gτ = 2, which corresponds
to the spin-3/2 interpretation. Here we have all three possible types of phase transi-
tions. Numerical results for this case showing the rich resulting structure are plotted in
Figure 5 on the following page and Figure 6 on page 21. Again, we observe that the
low-temperature susceptibility shows characteristic singular behaviour at h = 0 and di-
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(a) Entropy vs. temperature.
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(b) Specific heat vs. temperature.

Figure 5: Entropy and specific heat of the spin-orbital model at gS = 1, gτ = 2 for
various magnetic fields. The critical fields are hc1 = 4, hc2 ≈ 0.941 and hc3 ≈ 0.370.
Note the numbering of the critical fields as discussed on page 22.
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(b) Magnetic susceptibility vs. temperature.

Figure 6: Magnetisation and magnetic susceptibility of the spin-orbital model at gS = 1,
gτ = 2 for various magnetic fields. The critical fields are hc1 = 4, hc2 ≈ 0.941 and
hc3 ≈ 0.370. Note the numbering of the critical fields as discussed on the next page.
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Figure 7: Phase diagram of the spin-orbital model for magnetic field h and Landé factor
gτ , where gS = 1 is held constant. There exist five different phases (I–V), for details see
the text on the current page.

verges at the critical fields. The highest critical field is at hc1 = 4, the other two have
to be calculated numerically as only the lower bounds hc2 > 4 ln(2)/3 ≈ 0.924 and
hc3 > π/(2

√
3) − ln(3)/2 ≈ 0.358 are known explicitly. We find the remaining critical

fields to be hc2 ≈ 0.941 and hc3 ≈ 0.370. Note the numbering of the critical fields, where
at each field hcj the number of involved degrees of freedom changes from j to j + 1.
The advantage of this scheme is that the critical fields hc1 and hc2 also appear in the
spin-1 interpretation of the sl(3)-symmetric US model [33], while only hc1 remains in
the spin-1/2 Heisenberg model.

Figure 7 shows the complete phase diagram of the spin-orbital model depending on
the magnetic field h and the orbital Landé factor gτ , while the Landé factor of the
spins is set to gS = 1. Obviously, there exist five different phases. Above hc1 (I), all
spins and orbitals are fully polarised. Between hc1 and hc2, we have to distinguish the
regions gτ > 1 (II) and gτ < 1 (III). In the first region, the orbitals are fully polarised,
while the spins are only partially aligned. In the latter case, it is the other way around.
For gτ = 1, we have a direct transition from phase I to phase IV, because hc1 = hc2.
For a magnetic field below hc2, but above hc3 (IV), the spins and orbitals are both
partially polarised, while the state |↓S↓τ 〉 is still completely suppressed. For h < hc3 (V),
all possible spin configurations contribute to the ground state. Notice that hc1 tends to
infinity for gτ → 0. As we have seen before, only one phase transition survives for gτ = 0,
where the magnetic field couples only to the spins. The phase diagram presented here is
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qualitatively in perfect agreement with [43], where a finite system of 200 sites has been
used for the calculation.

6 Summary and outlook

We presented a set of suitable auxiliary functions that allowed us to derive a finite set of
NLIE for the thermodynamics of the sl(4)-symmetric one-dimensional US model. These
NLIE are well posed for an efficient numerical treatment using the fast Fourier transform
as they are of convolution type. Moreover, they are valid for the complete temperature
range and arbitrary chemical potentials. We have provided analytical results for several
limiting cases of our NLIE. Thus, we recovered the previously known NLIE of the sl(3)
case and the linearised integral equations for T = 0. Both provide further support for
the validity of the NLIE. Using the latter limit, we were able to derive all critical fields.
We also gave some numerical results for the SU (4) spin-orbital model as an example for
the application of the sl(4)-symmetric US model, achieving high accuracy even at low
temperatures.

This is the first time that NLIE of this type were derived for the sl(q)-symmetric
US model with q > 3. Unfortunately, up to now there is no general scheme to construct
the needed auxiliary functions for the case q ≥ 5. The functions presented here were
basically found by trial and error. Even at the level of the NLIE, it proves difficult to
generalise the structure of the somewhat complicated kernel matrix. Once the NLIE are
known for some number of states q, there is a straightforward way to extract the NLIE
of all sl(n)-symmetric cases with n < q by freezing out one or more of the states. Going
the opposite way fixes some of the structure, but does not provide enough information to
deduce the entries of the kernel matrix lying on the anti-diagonal. Nevertheless, we hope
to overcome these difficulties and to generalise the approach to cover the whole class
of sl(q)-symmetric models in the near future. For that, we expect that the number of
required auxiliary functions will be equal to the sum of the dimensions of all fundamental
representations of sl(q), i.e. 2q − 2. We note that a further generalisation of this type
of NLIE from the fundamental representation to higher rank representations [5] should
be quite straightforward. To achieve this, one has to consider slightly modified auxiliary
functions, which can be used to truncate the TBA equations at an arbitrary step, in
analogy to [30].

Another open question is the connection between the kernel matrix and the complete
S-matrix of elementary excitations [59]. In the T = 0 case, all kernel functions can
be obtained from corresponding S-matrix entries [54], the generalisation to T > 0 is
unknown.

The treatment of graded models is a further direction of generalisation. Up to now,
only the sl(2|1)-symmetric case has been treated this way [31, 32]. Although supersym-
metric models are generally more difficult, it turns out that, at least for the sl(2|1) case,
the corresponding NLIE are even simpler than the NLIE of the sl(3) case as only three
auxiliary functions are needed. The NLIE for the graded q = 4 models, e.g. the sl(2|2)
case [60], also seem to be simpler than the NLIE presented here. We hope to report soon
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on details concerning this model.
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A Derivation of the NLIE

The auxiliary functions, as defined in (23)–(25), are rational functions. Moreover, we
have numerically checked that they are analytic, non-zero and have constant asymp-
totics (ANZC) in a strip −1/2 . =(x) . 1/2, which includes the real axis. Therefore,
we are allowed to apply a Fourier transform to the logarithmic derivative of all auxiliary
functions,

f̂(k) =

∫ ∞

−∞

d

dx
[ln f(x)] e−ikx dx

2π
. (68)

In the cases k < 0 and k > 0, we can close the integration path to a contour above
and below the real axis, respectively. Hence, it is important to know in which of these
regions the first-order poles of the logarithmic derivatives are located and how they can
be further classified.

Let us first introduce some notation. We define the constants

a(1) = eβµ1 + eβµ2 + eβµ3 + eβµ4 , (69a)

a(2) = eβ(µ1+µ2) + eβ(µ1+µ3) + eβ(µ1+µ4)

+ eβ(µ2+µ3) + eβ(µ2+µ4) + eβ(µ3+µ4) ,
(69b)

a(3) = eβ(µ1+µ2+µ3) + eβ(µ1+µ2+µ4) + eβ(µ1+µ3+µ4) + eβ(µ2+µ3+µ4) , (69c)

ϕ1 = eβµ1 + eβµ2 , ϕ2 = eβµ2 + eβµ3 , ϕ3 = eβµ3 + eβµ4 , (69d)

χ
(1)
1 = eβµ1 + eβµ2 + eβµ3 , χ

(1)
2 = eβµ2 + eβµ3 + eβµ4 , (69e)

χ
(2)
1 = eβ(µ1+µ2) + eβ(µ1+µ3) + eβ(µ1+µ4) + eβ(µ2+µ3) + eβ(µ2+µ4) , (69f)

χ
(2)
2 = eβ(µ1+µ3) + eβ(µ1+µ4) + eβ(µ2+µ3) + eβ(µ2+µ4) + eβ(µ3+µ4) , (69g)

χ
(3)
1 = eβ(µ1+µ2) + eβ(µ1+µ3) + eβ(µ2+µ3) , (69h)

χ
(3)
2 = eβ(µ2+µ3) + eβ(µ2+µ4) + eβ(µ3+µ4) . (69i)

For the eigenvalues (22), we find the factorisation

Λ(1)(x) = Λ̃(1)(x) · a(1) , (70a)

Λ(2)(x) = φ−(x + i/2)φ+(x − i/2)Λ̃(2)(x) · a(2) , (70b)

Λ(3)(x) = φ−(v)φ−(v + i)φ+(v − i)φ+(v)Λ̃(3)(x) · a(3) , (70c)
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where all Λ̃(n)(x) are polynomials of degree N with the highest coefficients being one.
For the other terms in the auxiliary functions, which are generated by sums of certain
Young tableaux, we also find that several of their potential poles vanish due to the BA
equations (18). We can therefore write

1 + 2
∣∣
v=x

=
φ+(x)q

(h)
1 (x)

q2(x)
· ϕ1 , (71a)

2 + 3
∣∣
v=x

=
φ−(x)φ+(x)q

(h)
2 (x)

q1(x)q3(x)
· ϕ2 , (71b)

3 + 4
∣∣
v=x

=
φ−(x)q

(h)
3 (x)

q2(x)
· ϕ3 , (71c)

1 + 2 + 3
∣∣
v=x

=
φ+(x)X

(1)
1 (x)

q3(x)
· χ(1)

1 , (71d)

2 + 3 + 4
∣∣
v=x

=
φ−(x)X

(1)
2 (x)

q1(x)
· χ(1)

2 , (71e)

1
2

+ 1
3

+ 1
4

+ 2
3

+ 2
4

∣∣∣∣
v=x

=
φ−(x + i

2)φ+(x − i
2)X

(2)
1 (x)

q2(x − i
2)

· χ(2)
1 , (71f)

1
3

+ 1
4

+ 2
3

+ 2
4

+ 3
4

∣∣∣∣
v=x

=
φ−(x + i

2)φ+(x − i
2)X

(2)
2 (x)

q2(x + i
2)

· χ(2)
2 , (71g)

1
2

+ 1
3

+ 2
3

∣∣∣∣
v=x

=
φ−(x + i

2)φ+(x − i
2)φ+(x + i

2 )X
(3)
1 (x)

q3(x + i
2 )

· χ(3)
1 , (71h)

2
3

+ 2
4

+ 3
4

∣∣∣∣
v=x

=
φ−(x + i

2)φ+(x − i
2)φ−(x − i

2 )X
(3)
2 (x)

q1(x − i
2 )

· χ(3)
2 . (71i)

All functions q
(h)
j (x) and X

(n)
j (x) are polynomials of degree N , with the exception of

X
(2)
1 (x) and X

(2)
2 (x) being of degree 3N/2, and with a highest coefficient of one. We note

that the roots of the functions q
(h)
j (x) provide additional solutions to the corresponding

BA equations (18) and are called the hole-type solutions.
The roots of the polynomials can be obtained from numerical solutions of the BA

equations at finite N . We find that, in the complex plane, all roots are located on slightly
curved lines close to horizontal axes at certain heights. Each curve contains N/2 many
roots. The corresponding height values for each polynomial are given in the following
table:

qj(x): 0 Λ̃(j)(x): ±(j + 1)/2 (72a)

q
(h)
j (x): ±1 X

(1)
j (x): ±1 (72b)

X
(2)
1 (x): +1/2, ±3/2 X

(2)
2 (x): −1/2, ±3/2 (72c)

X
(3)
j (x): ±3/2 (72d)
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We like to stress that the deviations from these axes remain small even for large N .

Next, we write the auxiliary functions b
(n)
j (x) in a factorised form, from which one

can easily read off the locations of all roots and poles,

b
(1)
1 (x) =

φ−(x − i
2)φ+(x + i

2 )q1(x + 3
2 i)

φ−(x + i
2 )X

(1)
2 (x + i

2)
· eβµ1

χ
(1)
2

, (73a)

b
(1)
2 (x) =

φ−(x − i
2)φ+(x + i

2 )q2(x + 3
2 i)X

(3)
2 (x)

q1(x + i
2)q

(h)
3 (x + i

2)Λ̃(2)(x)
· eβµ2χ

(3)
2

ϕ3a(2)
, (73b)

b
(1)
3 (x) =

φ−(x − i
2)φ+(x + i

2 )q2(x − 3
2 i)q3(x + 3

2 i)

q3(x − i
2)X

(2)
2 (x)

· e2βµ3

χ
(2)
2

, (73c)

b
(1)
4 (x) =

φ−(x − i
2)φ+(x + i

2 )q3(x − 3
2 i)

φ+(x − i
2 )X

(1)
1 (x − i

2)
· eβµ4

χ
(1)
1

, (73d)

b
(2)
1 (x) =

φ−(x − i)φ+(x + i)q2(x + 2i)

X
(2)
2 (x + i

2 )
· eβ(µ1+µ2)

χ
(2)
2

, (73e)

b
(2)
2 (x) =

φ−(x − i)φ+(x + i)q1(x + i)q2(x − i)q3(x + 2i)

q2(x + i)X
(1)
1 (x)X

(3)
2 (x + i

2)
· eβ(µ1+2µ3)

χ
(1)
1 χ

(3)
2

, (73f)

b
(2)
3 (x) =

φ−(x − i)φ+(x + i)q1(x + i)q3(x − i)

q
(h)
2 (x)Λ̃(1)(x)

· eβ(µ1+µ4)

ϕ2a(1)
, (73g)

b
(2)
4 (x) =

φ−(x − i)φ+(x + i)q1(x − 2i)q3(x + 2i)

q
(h)
2 (x)Λ̃(3)(x)

· e2β(µ2+µ3)

ϕ2a(3)
, (73h)

b
(2)
5 (x) =

φ−(x − i)φ+(x + i)q1(x − 2i)q2(x + i)q3(x − i)

q2(x − i)X
(1)
2 (x)X

(3)
1 (x − i

2)
· eβ(2µ2+µ4)

χ
(1)
2 χ

(3)
1

, (73i)

b
(2)
6 (x) =

φ−(x − i)φ+(x + i)q2(x − 2i)

X
(2)
1 (x − i

2 )
· eβ(µ3+µ4)

χ
(2)
1

, (73j)

b
(3)
1 (x) =

φ−(x − 3
2 i)φ+(x + 3

2 i)q3(x + 5
2 i)

φ+(x + 5
2 i)X

(3)
1 (x)

· eβ(µ1+µ2+µ3)

eβµ4χ
(3)
1

, (73k)

b
(3)
2 (x) =

φ−(x − 3
2 i)φ+(x + 3

2 i)q2(x + 3
2 i)q3(x − i

2)

q3(x + 3
2 i)X

(2)
1 (x)

· eβ(µ1+µ2+µ4)

eβµ3χ
(2)
1

, (73l)

b
(3)
3 (x) =

φ−(x − 3
2 i)φ+(x + 3

2 i)q2(x − 3
2 i)X

(1)
2 (x + i

2)

q1(x − 3
2 i)q

(h)
3 (x + i

2)Λ̃(2)(x)
· eβ(µ1+µ3+µ4)χ

(1)
2

eβµ2ϕ3a(2)
, (73m)

b
(3)
4 (x) =

φ−(x − 3
2 i)φ+(x + 3

2 i)q1(x − 5
2 i)

φ−(x − 5
2 i)X

(3)
2 (x)

· eβ(µ2+µ3+µ4)

eβµ1χ
(3)
2

. (73n)
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The uppercase auxiliary functions B
(n)
j (x) factorise in an analogous way,

B
(1)
1 (x) =

q1(x + i
2 )Λ̃(1)(x + i

2)

φ−(x + i
2 )X

(1)
2 (x + i

2)
· a(1)

χ
(1)
2

, (74a)

B
(1)
2 (x) =

X
(1)
2 (x + i

2)X
(2)
2 (x)

q1(x + i
2)q

(h)
3 (x + i

2)Λ̃(2)(x)
· χ

(1)
2 χ

(2)
2

ϕ3a(2)
, (74b)

B
(1)
3 (x) =

q
(h)
3 (x + i

2)X
(1)
1 (x − i

2 )

q3(x − i
2)X

(2)
2 (x)

· ϕ3χ
(1)
1

χ
(2)
2

, (74c)

B
(1)
4 (x) =

q3(x − i
2 )Λ̃(1)(x − i

2)

φ+(x − i
2 )X

(1)
1 (x − i

2)
· a(1)

χ
(1)
1

, (74d)

B
(2)
1 (x) =

q2(x + i)Λ̃(2)(x + i
2)

X
(2)
2 (x + i

2)
· a(2)

χ
(2)
2

, (74e)

B
(2)
2 (x) =

q
(h)
2 (x)X

(2)
2 (x + i

2 )

q2(x + i)X
(1)
1 (x)X

(3)
2 (x + i

2 )
· ϕ2χ

(2)
2

χ
(1)
1 χ

(3)
2

, (74f)

B
(2)
3 (x) =

X
(1)
1 (x)X

(1)
2 (x)

q
(h)
2 (x)Λ̃(1)(x)

· χ
(1)
1 χ

(1)
2

ϕ2a(1)
, (74g)

B
(2)
4 (x) =

X
(3)
1 (x − i

2)X
(3)
2 (x + i

2)

q
(h)
2 (x)Λ̃(3)(x)

· χ
(3)
1 χ

(3)
2

ϕ2a(3)
, (74h)

B
(2)
5 (x) =

q
(h)
2 (x)X

(2)
1 (x − i

2 )

q2(x − i)X
(1)
2 (x)X

(3)
1 (x − i

2 )
· ϕ2χ

(2)
1

χ
(1)
2 χ

(3)
1

, (74i)

B
(2)
6 (x) =

q2(x − i)Λ̃(2)(x − i
2)

X
(2)
1 (x − i

2)
· a(2)

χ
(2)
1

, (74j)

B
(3)
1 (x) =

q3(x + 3
2 i)Λ̃(3)(x + i

2)

φ+(x + 5
2 i)X

(3)
1 (x)

· a(3)

eβµ4χ
(3)
1

, (74k)

B
(3)
2 (x) =

q
(h)
3 (x + i

2)X
(3)
1 (x)

q3(x + 3
2 i)X

(2)
1 (x)

· ϕ3χ
(3)
1

eβµ3χ
(2)
1

, (74l)

B
(3)
3 (x) =

X
(2)
1 (x)X

(3)
2 (x)

q1(x − 3
2 i)q

(h)
3 (x + i

2)Λ̃(2)(x)
· χ

(2)
1 χ

(3)
2

eβµ2ϕ3a(2)
, (74m)

B
(3)
4 (x) =

q1(x − 3
2 i)Λ̃

(3)
1 (x − i

2)

φ−(x − 5
2 i)X

(3)
2 (x)

· a(3)

eβµ1χ
(3)
2

. (74n)

Now, we apply (68) to all auxiliary functions. For brevity, we just treat the case k < 0
here as the calculation is completely analogous for k > 0. In this case, we just have to

deal with roots and poles, which are located above the real axis. For the functions b
(n)
j (x)
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we get the result

b̂
(1)
1 (k) = ek/2φ̂−(k) − e−k/2X̂

(1)
2 (k) , (75a)

b̂
(1)
2 (k) = ek/2φ̂−(k) + X̂

(3)
2 (k) − e−k/2q̂

(h)
3 (k) − Λ̂(2)(k) , (75b)

b̂
(1)
3 (k) = ek/2φ̂−(k) + e3k/2q̂2(k) − ek/2q̂3(k) − X̂

(2)
2 (k) , (75c)

b̂
(1)
4 (k) = ek/2φ̂−(k) + e3k/2q̂3(k) − ek/2φ̂+(k) − ek/2X̂

(1)
1 (k) , (75d)

b̂
(2)
1 (k) = ekφ̂−(k) − e−k/2X̂

(2)
2 (k) , (75e)

b̂
(2)
2 (k) = ekφ̂−(k) + ek q̂2(k) − X̂

(1)
1 (k) − e−k/2X̂

(3)
2 (k) , (75f)

b̂
(2)
3 (k) = ekφ̂−(k) + ek q̂3(k) − q̂

(h)
2 (k) − Λ̂(1)(k) , (75g)

b̂
(2)
4 (k) = ekφ̂−(k) + e2k q̂1(k) − q̂

(h)
2 (k) − Λ̂(3)(k) , (75h)

b̂
(2)
5 (k) = ekφ̂−(k) + e2k q̂1(k) + ek q̂3(k) − ek q̂2(k) − X̂

(1)
2 (k) − ek/2X̂

(3)
1 (k) , (75i)

b̂
(2)
6 (k) = ekφ̂−(k) + e2k q̂2(k) − ek/2X̂

(2)
1 (k) , (75j)

b̂
(3)
1 (k) = e3k/2φ̂−(k) − X̂

(3)
1 (k) , (75k)

b̂
(3)
2 (k) = e3k/2φ̂−(k) + ek/2q̂3(k) − X̂

(2)
1 (k) , (75l)

b̂
(3)
3 (k) = e3k/2φ̂−(k) + e3k/2q̂2(k) + e−k/2X̂

(1)
2 (k)

− e3k/2q̂1(k) − e−k/2q̂
(h)
3 (k) − Λ̂(2)(k) ,

(75m)

b̂
(3)
4 (k) = e3k/2φ̂−(k) + e5k/2q̂1(k) − e5k/2φ̂−(k) − X̂

(3)
2 (k) . (75n)

For the uppercase functions B
(n)
j (x) we find

B̂
(1)
1 (k) = e−k/2Λ̂(1)(k) − e−k/2X̂

(1)
2 (k) , (76a)

B̂
(1)
2 (k) = e−k/2X̂

(1)
2 (k) + X̂

(2)
2 (k) − e−k/2q̂

(h)
3 (k) − Λ̂(2)(k) , (76b)

B̂
(1)
3 (k) = e−k/2q̂

(h)
3 (k) + ek/2X̂

(1)
1 (k) − ek/2q̂3(k) − X̂

(2)
2 (k) , (76c)

B̂
(1)
4 (k) = ek/2q̂3(k) + ek/2Λ̂(1)(k) − ek/2φ̂+(k) − ek/2X̂

(1)
1 (k) , (76d)

B̂
(2)
1 (k) = e−k/2Λ̂(2)(k) − e−k/2X̂

(2)
2 (k) , (76e)

B̂
(2)
2 (k) = q̂

(h)
2 (k) + e−k/2X̂

(2)
2 (k) − X̂

(1)
1 (k) − e−k/2X̂

(3)
2 (k) , (76f)

B̂
(2)
3 (k) = X̂

(1)
1 (k) + X̂

(1)
2 (k) − q̂

(h)
2 (k) − Λ̂(1)(k) , (76g)

B̂
(2)
4 (k) = ek/2X̂

(3)
1 (k) + e−k/2X̂

(3)
2 (k) − q̂

(h)
2 (k) − Λ̂(3)(k) , (76h)

B̂
(2)
5 (k) = q̂

(h)
2 (k) + ek/2X̂

(2)
1 (k) − ek q̂2(k) − X̂

(1)
2 (k) − ek/2X̂

(3)
1 (k) , (76i)

B̂
(2)
6 (k) = ek q̂2(k) + ek/2Λ̂(2)(k) − ek/2X̂

(2)
1 (k) , (76j)

B̂
(3)
1 (k) = e−k/2Λ̂(3)(k) − X̂

(3)
1 (k) , (76k)

B̂
(3)
2 (k) = e−k/2q̂

(h)
3 (k) + X̂

(3)
1 (k) − X̂

(2)
1 (k) , (76l)

28



B̂
(3)
3 (k) = X̂

(2)
1 (k) + X̂

(3)
2 (k) − e3k/2q̂1(k) − e−k/2q̂

(h)
3 (k) − Λ̂(2)(k) , (76m)

B̂
(3)
4 (k) = e3k/2q̂1(k) + ek/2Λ̂(3)(k) − e5k/2φ̂−(k) − X̂

(3)
2 (k) . (76n)

The crucial point is the observation that the latter forms a system of 14 linear equa-

tions, exactly as many as there are unknown functions besides B̂
(n)
j (k). Therefore,

we can solve (76) to get q̂1(k), q̂2(k), q̂3(k), Λ̂(1)(k), Λ̂(2)(k), Λ̂(3)(k), q̂
(h)
2 (k), q̂

(h)
3 (k),

X̂
(1)
1 (k), X̂

(1)
2 (k), X̂

(2)
1 (k), X̂

(2)
2 (k), X̂

(3)
1 (k) and X̂

(3)
2 (k) in terms of the auxiliary func-

tions B̂
(n)
j (k). Eventually, we substitute this result into (75) and are left with a set of 14

equations, in which only b̂
(n)
j (k) and B̂

(n)
j (k) appear.

We combine the results from the cases k < 0 and k > 0 to get a system of equations
valid for all k ∈ R. We find the equations to be

b̂(k) = −iN sinh(kβ/N)V̂(k) + K̂(k) · B̂(k) , (77)

where

b̂ =
(
b̂
(1)
1 , . . . , b̂

(1)
4 , b̂

(2)
1 , . . . , b̂

(2)
6 , b̂

(3)
1 , . . . , b̂

(3)
4

)T
, (78)

B̂ =
(
B̂

(1)
1 , . . . , B̂

(1)
4 , B̂

(2)
1 , . . . , B̂

(2)
6 , B̂

(3)
1 , . . . , B̂

(3)
4

)T
, (79)

V̂ =
(
V̂

(1)
[4] , . . . , V̂

(1)
[4] , V̂

(2)
[4] , . . . , V̂

(2)
[4] , V̂

(3)
[4] , . . . , V̂

(3)
[4]

)T
. (80)

The matrix K̂(k) is exactly the Fourier transform of the kernel matrix (31), and the
function

V̂
(j)
[q] (k) =

sinh([q − j]k/2)

sinh(qk/2)
(81)

is the Fourier transform of (38). Only the first term on the right-hand side of (77)
contains the Trotter number N explicitly. To analytically perform the global Trotter
limit N → ∞, we therefore just have to consider

lim
N→∞

N sinh(kβ/N) = kβ . (82)

Next, we apply the inverse Fourier transform and an integration over x to equation (77) to
eventually obtain the NLIE (26)–(38). The missing integration constants are determined
by considering (26) in the limit x → ∞. The asymptotics of the auxiliary functions can
be easily read off from (73) and (74), because only the constant factors on the right-hand
sides survive for large x. For the convolutions with the kernel functions, we find

lim
x→∞

[
Ki ∗ B

(n)
j

]
(x) = B

(n)
j (∞)

∫ ∞

−∞
Ki(x)

dx

2π
= B

(n)
j (∞)K̂i(0) . (83)

Inserting this information into (26) finally leads to the constants given in (39).
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To also derive the formula for the largest eigenvalue (40), one has to recall that the
eigenvalue already appeared during the calculation. Its logarithmic Fourier transform

Λ̂(1)(k) could be expressed solely in terms of B̂
(n)
j (k). We additionally define the function

Λ(1)(x) =
Λ(1)(x)

φ−(x − i)φ+(x + i)
, (84)

which has the advantage of having constant asymptotics. In the Trotter limit N → ∞,
this definition simply yields ln Λ(1)(0) = ln Λ(1)(0) − β. Using the previously obtained
information on Λ̂(1)(k), we can write

Λ̂
(1)

(k) = iN sinh(kβ/N)e−|k|/2 sinh(3k/2)

sinh(2k)
+

3∑

n=1

dn∑

j=1

V̂
(n)
[4] (k) · ln B̂

(n)
j (k) . (85)

Now we proceed as above. To perform the Trotter limit, we just have to use (82). Then
we apply the inverse Fourier transform and an integration over the spectral parameter.
Again, we find the integration constant by considering the limit x → ∞. We finally
arrive at equation (40).
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